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The behaviour of an inviscid vortex layer of non-zero thickness near a wall is studied, 
both through direct numerical simulation of the two-dimensional vorticity equation 
at high Reynolds numbers, and using an approximate ordinary nonlinear integro- 
differential equation which is satisfied in the limit of a thin layer under long- 
wavelength perturbations. For appropriate initial conditions the layer rolls up and 
breaks into compact vortices which move along the wall at  constant speed. Because 
of the effect of the wall, they correspond to equilibrium counter-rotating vortex 
dipoles. This breakup can be related to the disintegration of the initial conditions of 
the approximate nonlinear dispersive equation into solitary waves. The study is 
motivated by the formation of longitudinal vortices from vortex sheets in the wall 
region of a turbulent channel. 

1. Introduction 
The existence of streamwise vortical structures in the near-wall region of turbulent 

channels and boundary layers has been reported or inferred on many occasions 
during the last few decades. For example, the direct numerical simulations of channel 
flows by Kim, Moin & Moser (1987), using visualization techniques similar to those 
in the older experiments of Kim, Kline & Reynolds (1971), showed the existence of 
such structures with spacings and lengths similar to those observed in experiments. 
A more detailed study was done in Jim6nez & Moin (1991) through the use of 
numerical simulations in minimal ' channels, in which only a few structures are 
present in the computational domain, making it easier to follow their time evolution 
and interaction. These studies confirmed the essential character of the structures as 
long streamwise vortices, as well as their importance in determining the behaviour 
of the flow. A similar conclusion was reached by Robinson (1991) in his analysis of 
Spalart's (1988) turbulent-boundary-layer direct simulations. He observed that, in 
the inner zone, single unpaired near-wall quasi-streamwise vortices generate 
persistent low-speed streaks, and that counter-rotating vortex pairs are rare. 

Thin localized layers of streamwise vorticity are also common features in the wall 
region, occurring most often near the outer edge of the viscous sublayer (y' w 1&15). 
They have thickness comparable with their distance from the wall, and spanwise 
widths of the same order as those of the low-velocity wall-layer streaks (x'x 
50-100). As is true for most features near the wall, they are substantially longer than 
they are wide (x' % 300-500). They are observed to roll into compact streamwise 
cores that seem indistinguishable from the streamwise vortices mentioned above. 

A particularly clear example is shown in figure 1,  which is adapted from Sendstad 
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FIGURE 1. Rollup of a streamwise vortex layer, defined by an o, isosurface, in the wall region 
of a turbulent channel. Flow is from lower left to upper right. The domain is doubly periodic: 
xu,/v = 300, zu,/v = 105. Re, = 98. The isosurface is w, V~U," = 0.1 ; time between traces is 
ufAt/v = 9.5, increasing from (a) to ( d )  (from Sendstad 1992). 

(1992). It shows the time evolution of an isosurface of positive streamwise vorticity 
in the wall region of a minimal turbulent channel. The frame of reference moves 
forward with a translation velocity of 10 u,, close to the one associated with the high- 
stress features near the wall (Jimhez & Moin 1991). As a consequence the wall, which 
lies at the x , z  coordinate plane, appears to move slowly backwards. The friction 
velocity is defined in terms of the average spanwise wall vorticity 52, as u, = (Qv);. 
The 2, y coordinate plane at the lower left shows a cross-section of the structure. A 
vortex layer is observed, which rolls up later into a circular streamwise core with a 
thin tail to one side. More detailed cross-sections of these same fields, discussed in 
Sendstad (1992), show a strong streamwise vortex of opposite sign located on top of 
the vortex layer. Its rotation is such as to  push the left edge of the layer towards the 
wall, so that the rollup of the far side of the layer occurs against the velocity induced 
by that vortex. This point will be discussed below in more detail. Sendstad also shows 
that, at the time of the last frame, secondary vorticity of opposite sign forms at the 
wall underneath the newly rolled vortex. Later, this secondary vorticity appears to 
organize itself into a new sheet, restarting the cycle. It is not clear whether the new 
sheet derives primarily from the secondary wall vorticity or from inviscid rotation 
of the other vorticity components in the flow. The analysis in Jimhnez & Moin (1991) 
suggest that this latter alternative is the most likely one, and the issue is still under 
investigation. Here we will only concern ourselves with the rollup process, which 
occurs relatively far from the wall, and is almost certainly inviscid. 

The fact that the dominant structures are elongated in the streamwise direction 
suggests that a quasi-two-dimensional model may be built, in the x ,  y transverse 
plane, in which the longitudinal variation is represented only by slow perturbation 
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terms. Two-dimensional flows can be studied a t  a level of detail that  would be 
unaffordable in three dimensions and the mechanisms understood in this way can 
then be used as building blocks for the complete flow. A two-dimensional model for 
the rollup was introduced in Orlandi & Jim6nez (1991), where the presence of the 
longitudinal vortices was also shown to be enough to account for many of the 
phenomena observed in near-wall turbulence, including the presence of low-velocity 
streaks and the growth of the mean wall shear stress above its laminar value. It was 
also observed in that paper that  vortex layers introduced near the wall roll up into 
compact cores in times comparable with their eddy turnover times. The present 
paper is an attempt to explore this latter phenomenon and, although motivated by 
the wall turbulence observations, is mostly an investigation on a particular aspect of 
vorticity dynamics. 

Pullin (1981) studied the behaviour of two-dimensional inviscid layers of uniform 
vorticity adjacent to a wall. His motivation was the formation of large-scale bulges 
at the outer edge of boundary layers. The scale of his flows was very different from 
ours, since they were intended to model the whole boundary layer, instead of the wall 
region, and his two dimensions were in the streamwise (z, y)-plane, as opposed to the 
transverse (2, y)-plane considered here but, from the point of view of vorticity 
dynamics, his computations are close to ours. His initial conditions were not 
appropriate to induce rollup. Stern & Pratt (1985) also investigated the evolution of 
an inviscid layer of uniform vorticity near a wall, with initial conditions close to ours 
and leading to rollup, but their interpretation and motivation were also somewhat 
different. We will discuss these results later. 

A related ‘ collapse ’ of a vortex sheet into compact streamwise cores is known to 
occur away from walls, in the plane turbulent shear layer, and has been explained in 
Lin & Corcos (1984) and Neu (1984) as a result of the effect of longitudinal strain on 
the vortex layer. It had previously been shown by Lundgren (1982) that any axially 
strained flow in which the basic velocity field, except for the strain, is two- 
dimensional, can be related to a strictly two-dimensional flow field by a scaling 
transformation. This suggests that, even if the amplification of longitudinal vorticity 
in the shear layer is due to the presence of the straining field, the mechanism of rollup 
of the initial layer into compact cores is a two-dimensional one. In  fact, two- 
dimensional numerical calculations of elongated vortices show a tendency to roll into 
cores (see Melander, MeWilliams & Zabusky 1987, for a particular mechanism). A 
well known counterexample to this tendency, the equilibrium rotating elliptical 
Kirchhoff vortex of arbitrary elongation (Lamb 1932, 3 159), and its generalizations 
(Polvani & Flier1 1986), are probably isolated cases. From this point of view, the 
restriction imposed here that the layer be near a wall is a simplifying assumption, 
allowing for an approximate analytical treatment of the problem in the limit of thin 
layers with slow variations in the spanwise direction. However, the presence of the 
wall changes the character of the rollup, in that i t  becomes dominated by the 
influence of the ‘image’ vortex, reflected across the wall by the condition of zero 
normal velocity. Vortices near a wall behave like parts of counter-rotating dipoles 
rather than as independent entities. 

The thin-layer analysis is presented in the next sections. The behaviour of the 
resulting equations is discussed, both analytically and numerically, and the 
important parameters identified. Simulations of the full two-dimensional equations 
of motion are also presented. They are not subject to the limitations of the 
approximate method, and provide a direct physical interpretation of the ap- 
proximate results, as well as an evaluation of their accuracy. In particular, they show 
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that the local vorticity accumulations observed in the thin-layer approximation do 
indeed correspond to vortex rollup. It is shown that, for appropriate initial 
conditions, the vortex layer breaks into isolated equilibrium vortices which move 
along the wall at  uniform velocity and without change of shape. This process is 
connected to the breakup of the solutions of the thin-layer equations into solitary 
waves, and this connection is explored. The relevance of this process to the behaviour 
of near-wall turbulence is discussed briefly in the conclusions. 

2. The thin-layer approximation 
Consider a two-dimensional flow near an infinite flat wall. In its application to wall 

turbulence, the two-dimensional plane would be the one normal to the mean flow, 
with only transverse variations being considered, while streamwise, x, derivatives are 
neglected. This will be emphasized by keeping throughout the paper the label z for 
the coordinate parallel to the wall. The flow is inviscid and incompressible and can 
be described by a velocity vector, (u, v), and a vorticity, w = v,-u,, which satisfy 

wt + uw, -I- vwy = 0, (1)  
where subscripts denote differentiation. The velocity satisfies the boundary 
conditions 

and can be computed from the vorticity using the Biot-Savart law, 

v(z ,y=O)  = o ,  u(x,y-tCo)+O, (2) 

with an equivalent representation for v. The first term in the kernel of this integral 
represents the effect of the actual vorticity, while the second one corresponds to the 
negative image reflected by the wall to enforce the condition of zero normal velocity. 

Note that the homogeneous boundary condition at infinity implies that there is no 
energy input to the flow and that the only equilibrium state is that at  rest. Our 
interest will be in the evolution of an initial vorticity distribution. In a ‘real’ 
turbulent situation, three-dimensional effects have to be invoked to prevent the flow 
from decaying, and they would dominate the long-term behaviour. However, if the 
streamwise derivatives are much smaller than the transverse ones, the timescale 
associated with the three-dimensional effects, A x / U ,  is much longer than the one 
associated to the transverse effects studied here, A z / U ,  and the latter could still be 
observed as a fast transient phase within a slow three-dimensional evolution. It is in 
this light that the two-dimensional flows described here should be understood. 

We will be interested in the case in which the vorticity is confined to a thin layer 
near the wall, for which y - O(s) $ 1, but whose spanwise dimension is Az - 0(1) ,  
and we will study the problem as a perturbation in the small parameter 8. To fix 
ideas, we choose the vorticity so that the spanwise velocity is O(1) .  The relevant 
scalings are 

T t  is convenient to study the flow in terms of quantities integrated across the layer. 
Integrating (1) over YE (0, a), we obtain an evolution equation for the circulation 
density per unit span, 

z - u - 0(1), y - 2, - O(E), w - 0(1/€). (4) 
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where 

The velocity (3) can be put into a more convenient form by integrating by parts 

where the branch of arctan (1/5) should be chosen so that it vanishes a t  6 + f 00 and 
has a discontinuous jump at 5 = 0. 

The main contribution to (7) ,  within the vortex layer, is uo - O(1). Using it in the 
convective vorticity flux in ( 5 ) ,  we obtain a self-contained approximate evolution 
equation for y ,  which behaves like a simple nonlinear wave, 

This equation was first obtained by Stern & Paldor (1983) for the particular case of 
a layer of uniform vorticity, but the present derivation shows that it also applies to 
more general vorticity distributions (see also a recent discussion in Goldstein, Leib 
& Cowley, 1992). Its physical interpretation is that the vortex layer is too thin to 
perturb the outer flow, which remains a t  rest. The velocity, uo, a t  the outer edge of 
the vortex layer is zero and increases by y across the layer. The vorticity in the layer 
is convected by this spanwise velocity, averaged over its thickness, which is itself 
proportional to the circulation density. As a consequence, regions with higher 
circulation are convected faster, and they eventually overtake those with lower 
circulation, resulting in multiple-valued solutions for y(z) (Whitham 1974, pp. 
19-26). Since y is an integral over y and cannot be multivalued, a discontinuity has 
to  appear, similar in some respects to the shocks in Burger's equation. It is important 
to note, however, that equation (8) is not Burgers' equation, and that the behaviour 
of the 'shock' is governed by higher-order terms that are not contained in this 
lowest-order approximation. 

The exact correction to (8) is the small term, ul,  that was neglected in the 
expression for the velocity. That term is complicated but, in the interesting case of 
long waves (e < l),  it  can be simplified by substituting the kernel, 

Yt+YYz = 0. (8) 

~ ( 5 ,  y, 7) = a r c t a n m + a r c t a n -  7+Y 
5 5 '  (9) 

by some approximation which is consistent with its limit as 6 9 e, 

%(5> Y, r )  = 27Ro(6), 

with K O ( 5 )  = 1/5. (11) 
(10) 

The most serious discrepancy between (9) and (11) occurs near 5 = 0, where the latter 
becomes singular while the former is merely discontinuous. The behaviour of the 
kernel a t  small distances is related to the propagation of short waves. Equation ( 5 )  
is inviscid, and any wave equation resulting from it is at most dispersive. A 
dispersion relation is defined when a uniform vortex layer is modified by infinitesimal 
perturbations proportional to exp [iK(x-cCt)l. It can be shown that the singularity of 
(1  1) a t  the origin leads to an infinite phase velocity for short waves and that that  
behaviour is spurious. Even if those waves cannot be expected to be described 



302 J .  Jimdnez and P. Orlandi 

correctly by a long-wave approximation, the infinite phase velocity interferes with 
the numerical analysis of the equation and introduces excessive dispersive effects in 
its evolution. The behaviour of short waves depends on the local dynamics of the 
vortex sheet, and on its internal structure. 

To continue, we have to choose either a particular vorticity distribution across the 
layer, or an arbitrary form for our approximate kernel. Both approaches are 
consistent with the long-wave limit as long as the kernel tends to (lo), (11) for 
large E. 

The simplest application of the first approach is a layer with a uniform vorticity 
distribution, which leads to an integro-differential equation that is usually known as 
the contour dynamics equation (Deem & Zabusky 1978). That equation is exact, 
although complicated, but it can be integrated numerically. It has been applied to 
the case of a vortex layer adjacent to a wall by Pullin (1981), Stern & Pratt (1985) 
and Broadbent & Moore (1985) among others. It very quickly leads to overturning 
and filamentation, which are incompatible with the long-wave approximation, and 
which complicate the analysis of the solution. Both processes also result in 
engulfment of irrotational fluid, and eventually destroy the uniform distribution of 
vorticity. Our numerical experiments with full simulations of the Navier-Stokes 
equations support this behaviour for layers with moderate aspects ratios, e - 1 ,  but 
suggest that entrainment is less important for thin slender layers, for which the 
constant-vorticity assumption should be more justifiable. In any case, it can only be 
considered as an arbitrary simplification intended to help to understand the basic 
structure of the rollup. 

In this paper we have followed the second approach, which is to use 5t fully 
nonlinear approximation for the long-wave limit, and to choose the integral kernel 
so as to obtain a given linear dispersion relation for short waves. To simplify the 
comparison with previous work we have used the relation for a sheet of uniform 
vorticity, but the approach is more general and could be easily adapted to other 
cases. 

The exact dispersion relation for infinitesimal waves on a uniform layer of constant 
vorticity, with thickness h and circulation density r, was obtained by Rayleigh 
(1887) as 

c = r( 1 - e-2"h)/2~h. 
The phase velocity is always finite and approaches zero for very short waves, which 
is generally true €or non-singular vorticity distributions. It can be reproduced 
exactly by the use of a kernel of the form (lo),  although with a different inner factor 
(see Appendix A), 

A n [ [2+4h2 1 E K&) = ---log--- arctan- 
2h 4h2 E2 2h' 

In this kernel, h - O(e) is the thickness of the layer, defined below in (15), and should 
strictly be taken as a variable quantity, depending on the local y. There is no a priori 
reason to make h in K(s-x)  depend on y(s), y(z), or on any other combination of the 
two, but it is analytically advantageous to choose a combination which is symmetric 
in (s, z ) ,  such as 0.5 [y(s)  +y(z)]  (see Appendix B). This choice makes the equation 
highly nonlinear, but has the advantage of not introducing new parameters in the 
equation, and of leaving its scaling and symmetry properties intact. I t  should be 
remembered, in any case, that the resulting equation is only a simplified model for 
a complicated phenomenon, just as in the contour dynamics approximation, and 
that its only justification is to allow some analytical insights into the behaviour of 
the full equations. 
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Substituting (10) into the equation for u1 leads to an evolution equation for the 
circulation, accurate to O(E) ,  

where 

We consider now a vortex layer of constant vorticity l /m and local thickness h(z), 

w = l/ns if 0 < y < h(z) = xey(z),  o = 0 otherwise, (15) 

and use it both to parameterize kernel (13) and to express p in terms of y .  The result 
is a model equation for the circulation which maintains the full nonlinear character 
of the problem and which has the right long- and short-wave dispersion properties, 

It might be useful to comment again on the relation between the approximate 
equation (16) and the better known equations of contour dynamics, which are 
obtained in the present context by assuming uniform vorticity directly in (3). We 
have chose to introduce the assumption of uniform vorticity much later in the 
derivation to emphasize the relative generality of our approach. Equations (8) and 
(10) are strictly long-wave approximations that make no use of the vorticity 
distribution within the layer, as long as longitudinal gradients can be assumed to be 
small. Equation (14) is equally general, and it is only in closing it that a particular 
vorticity distribution has to be introduced. The assumption of uniform vorticity is 
the most convenient one, and probably the most physically relevant, but is not the 
only one possible. In  fact any self-similar distribution of the form w = F(y /h ( z ) )  
results in an equation similar to (15) although with a different dispersive kernel. The 
price of this freedom is the need to  abandon the accuracy for short waves, since 
different distributions have different high-wavenumber behaviour. It is because of 
this that we have to choose our kernel explicitly if we want to approximate a given 
vorticity distribution. 

We might also comment at  this point on the nonlinear character of the dispersive 
term in (16), since it might appear at first sight that it is a small term that can be 
linearized in y without loss of accuracy. This is not so. The first nonlinear term in the 
equation, yyz, is exact and implies no weakly nonlinear assumption, as follows from 
the derivation of (8). The only approximation is in the long-wave treatment of ul, 
which depends only on the assumption that s - y-lyZ < 1, but not on the smallness 
of the perturbations in y. Other interesting limits are possible. Dritschel (1988), for 
example, uses a weakly nonlinear expansion of the contour dynamics equations of a 
circular vortex patch to study the behaviour of moderate-amplitude perturbations, 
and the resulting filamentation of the sharp interface. As discussed above, such 
short-wave phenomena are outside our approximation, but our results are not 
necessarily limited to weakly nonlinear perturbations, or to sharp interfaces. Stern 
& Pratt (1985) show that, for weakly nonlinear long waves, contour dynamics can be 
approximated by the Benjamin-Ono equation (Benjamin 1967), which is a version 
of (7) using the approximate kernel (11). As noted above, the dispersion relation for 
that kernel is incorrect for short waves. 
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3. Higher approximations and 'shock' structure 
The lowest-order approximation discussed in the previous section is only valid as 

long as the horizontal derivatives remain small with respect to the normal ones. 
However, the presence of the nonlinear convection velocity in (8) guarantees that 
any initial distribution of y will eventually generate locally high values of ay/ax at 
the points in which fluid particles with strong circulation overtake weak ones. At 
those points the low-order approximation breaks down and higher-order terms 
become important. The fact that (16) has no dissipative component suggests that it 
is unlikely to sustain steady-state 'shocks' similar to those in gas dynamics or in 
Burgers' equation. Dispersive equations tend to deal with discontinuities by emitting 
wave trains to get rid of the extra energy, in the same manner as in the undular bores 
of water waves (Whitham 1974, pp. 9&112). 

In fact, it is possible to prove that (16) has no solutions corresponding to steady 
'fronts' connecting two different uniform states with a wave of permanent form and 
constant celerity. The essence of the proof is that (16) can be shown to conserve the 
integral of an 'energy ', y2, besides total circulation. When an equation can be written 
in conservation form, 

(17) 
a m  %s_, pdz+$l_", = 0, 

where the notation $I-", stands for $( 00) - $( - a), and p and $ represent some 
density and flux, it can be shown (Whitham 1974, pp. 30-32) that a smooth steady 
front connecting uniform states ' + ' and ' - ' should move with a velocity 

9, - 4- us=-. 
P+ -P- 

Equation (16) is already in conservation form, for a density p ( l )  = y, and a flux 
#l) = &y2, since the integral term vanishes for a uniform state. This corresponds 
to  vorticity conservation, and requires a front velocity 

(19) = 1 z(Y++Y-)' 

It is shown in Appendix B that (16) can also be written as a conservation equation 
for p(2) = y2, with a flux $@) = gy3. This conserved quantity, which is essentially p, 
can be related to the conservation of horizontal momentum. The corresponding front 
velocity, 

is in general different from that given in (19) and, since a permanent front can only 
have one propagation velocity, either one or the other quantity would not be 
conserved by it, and permanent fronts are impossible. 

Note that, t o  be able to derive a front velocity, conservation has only to be proved 
in infinite domains, as in (17).  Strict conservation requires that the same result 
applies between arbitrary limits. As noted by one of the referees, the first 
conservation law discussed above is strict, while the second one applies only in the 
weak sense discussed in this paragraph. 

Physically, the root of the problem is the difference between the velocity with 
which a discontinuity is being convected by the flow and the vorticity conservation 
velocity (19). Consider a weak front connecting two uniform vortex layers with 
circulation densities y+ and y-. If the vorticity in both layers is the same, the 

(20) up = z 3(Y+ 3 -Y:)l(Y; -Y% 
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different circulations are the result of different thickness, and the front appears as a 
jump in the upper surface of the layer. A sharp front is convected with the local 
velocity of the fluid, since it can be essentially identified with a fluid particle, and 
that velocity is small near the upper interface. It is only the collective effects 
associated with large wavelengths that can induce phase velocities appreciably 
different from those of the local fluid. That is why the exact dispersion relation (12) 
vanishes as K + co . In fact, the velocity induced by a rectangular step on the surface 
of a vortex layer can be computed exactly by conformal mapping, with the result 
that the fluid a t  the centre of the step moves approximately with a velocity #y+ - y-1, 
This is roughly the convection velocity of a weak shock, and is small and in general 
different from (19). As a consequence vorticity is not conserved and it is this lack of 
conservation that leads to a local accumulation of vorticity near the front, and to the 
rollup. The length over which the rollup is spread is controlled by the difference 
between the slow convection velocity of the shock and that of the bulk of the 
vorticity, which is proportional to the local circulation density. For weak fronts in 
strong layers this difference is large, and the fronts disperse fast, without leading to 
strong rollups. Conversely, strong shocks on weak layers remain compact, leading to 
strong vorticity concentrations. Examples of this, and other, behaviour are shown in 
the numerical simulations in the next section. 

These remarks help to explain the sequence of events in figure 1.  Consider the 
vortex layer lying near the wall in frame (a).  Its vorticity is clockwise (w < 0 ) ,  and 
it induces near the wall velocities directed towards the left (far) side of the channel. 
This is also the edge at which the layer eventually rolls up. The velocity field adjusts 
itself to a state of rest (or uniform velocity) away from the wall, and does so by 
creating a variable left-going jet between the vortex layer and the wall, which is 
the one that eventually produces the rollup. Note that this is true even in the 
presence of a no-slip wall that reacts to the jet by creating a secondary vortex sheet 
of opposite sign, which is not shown in our three-dimensional figure but which is 
clearly visible in the two-dimensional sections given in Sendstad (1991). It should 
also be emphasized that, as noted in the introduction, the rollup develops in a 
direction opposite to that induced by other vortices in the flow field, and that it 
should therefore be considered as a consequence of the nonlinear interaction of the 
layer with itself. 

4. Simulation results 
In this section we present results from two sets of numerical simulations. Those in 

the first group solve the initial value problem for the approximate nonlinear integro- 
differential equation (16), with the kernel (13). They use a simple finite-differences, 
second-order scheme, either with periodic boundary conditions in z or with the 
assumption that y is constant outside the domain of integration. The result is a time 
history for the circulation density, y(z, t ) .  Because of the assumptions that went into 
the derivation of ( 16), these simulations approximate a uniform vorticity distribution 
across the layer. 

The second set of simulations integrate the initial value problem for the full two- 
dimensional Navier-Stokes equations (1)-(3), with a Reynolds number and free-slip 
conditions at the wall, w ( z ,  y = 0 )  = 0. As a consequence, the flow is essentially 
inviscid and should be qualitatively comparable to that in the first set of simulations. 
The numerical scheme is described in detail in Orlandi (1989). It is a finite- 
differences, vorticity-streamfunction code, with second-order accuracy in both space 
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and time. It uses explicit time advancing for the nonlinear terms, but is fully implicit 
for the viscous ones, with global conservation of enstrophy, energy and circulation 
in the inviscid limit. We use grids of up to 257 x 1537 ( x  x y), to represent accurately 
the high vorticity gradients that are needed to approximate a uniform vorticity 
distribution. Some smoothing at the vortex boundaries is nevertheless necessary, and 
is carried out using a hyperbolic tangent function with a thickness of about 10 '?LO of 
the layer thickness. The condition at y+ co is simulated by a free-slip horizontal 
boundary in the irrotational region away from the wall. The horizontal size of the 
numerical domain, and the vorticity magnitude are chosen so as to be comparable 
with the simulations in the first set. The resulting vortex-layer thickness and 
maximum vorticity are both O( 1). The location of the upper numerical boundary was 
found to influence appreciably the convection velocity of the structures, and was 
increased until the error in the velocity was below 1 %. The resulting numerical 
domain is z =  50, y = 2 0 .  The Reynolds number, defined as the ratio of total 
circulation in the computational box t o  the kinematic viscosity, is lo4. The flow is 
assumed to be periodic in the z-direction. 

The results of this second set of simulations are two-dimensional vorticity maps. 
From them, the circulation density, y ,  can be computed by integration over y and 
compared with the results of (16). The main purpose of these simulations, however, 
is not to check the accuracy of that equation, but to gain insight into the vorticity 
distributions leading to the different effects observed in the evolution of y.  This is 
done by comparing the one-dimensional circulation distribution with the two- 
dimensional vorticity maps. 

An example of the two different types of front behaviour discussed at  the end of 
the previous section is shown in figure 2 ,  which was obtained by numerical 
integration of (16). A strong front representing the leading edge of a uniform vortex 
layer quickly develops a concentrated vortex at its leading edge, while another one, 
representing a change of intensity within a relatively strong layer disperses into 
longer waves which can hardly be described as concentrated. Similar behaviour was 
found by Stern & Pratt (1985) using contour dynamics for a uniform sheet. They, 
however, interpret them as steady shocks and try to explain the velocity of the 
concentrated vortices in terms of a shock-fitting formula of the type discussed in 8 3. 
For the reasons explained in that section we believe that to be incorrect, and we will 
give below an interpretation of the vortices in terms of nonlinear solitary waves of 
the dispersive equation. 
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FIGURE 3. Evolution of the circulation density, y,  in a spatially periodic vortex sheet. Solid lines, 
approximate equation (16) ; dashed, direct simulation of (1). a = 0.5; y(z, 0) = 0.75 +0.5cos ( m / 8 )  ; 
time interval between traces, At = 10, running upwards. 
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FIUURE 4. Evolution of the circulation density, y ,  in an isolated vortex layer. e = 0.5; y(z, 0) = 0.5 
cos (3xz/50. )  if IzI < 25/3), zero otherwise; time interval between traces, At = 30, running upwards. 
Solid lines, equation (16) ; dashed, direct simulation. 

Two other examples are given in figures S5. In figure 3, a layer with a sinusoidal 
perturbation disperses without rolling up. Circulation distribution histories both 
from the approximate equation and from direct simulations are shown, and they 
agree qualitatively. The vorticity fields of the direct simulation are uninteresting, 
and show a slightly nonlinear wave propagating from left to right. There is no 
significant entrainment of irrotational fluid. This was the case treated by Pullin 
(1981), using contour dynamics, although for shorter wavelengths. He did not find 
rollup, but his waves steepened and developed thin irrotational filaments that were 
entrained into the layer. Our numerical simulations of shorter waves show the same 
results, but they are outside the scope of this paper, and they are not shown here. The 
reason for the absence of rollup is the same as in the case of the circulation front 
within a strong layer. Any sharp longitudinal derivative formed by the flow travels 
with a celerity close to the (zero) velocity of the free stream, and is immediately 
dispersed by the long nonlinear waves travelling at  much higher phase speeds. 

A more interesting example is that in figure 4 which displays the evolution of an 
isolated vortex layer, and is closer to the turbulent channel features that motivated 
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1 ' "  
FIGURE 5. Vorticity maps corresponding to the direct simulations in figure 4. Horizontal axis at 

wall, ZE ( -  10,35). Time increases from (a)-(f). 

our research, A strong discontinuity at its leading edge appears which eventually 
results in an accumulation containing most of the vorticity in the layer. A secondary 
rollup is observed behind the primary one, and eventually the layer breaks into a 
leading vortex, with a completely disconnected, smaller, secondary one behind it. 
Note that the left-hand end of the layer does not move during the evolution, in 
agreement with the zero propagation velocity implied by (8) for points at which 
y = 0. As a consequence, the rolled vortices retain a thin 'tail' formed by the slowly 
moving vorticity from the left end of the original layer. 

These effects are even more pronounced in the results of the direct two-dimensional 
simulations, which are shown as dashed lines in figure 4 and as two-dimensional maps 
in figure 5. The breaking of the layer into isolated vortices is here more complete and, 
in the last time frame, three individual vortices can be identified. The trailing tail is 
also present and stagnant. The qualitative behaviour of the two solutions in figure 
4 is similar, but their quantitative agreement is poor. This had to be expected, not 
only because the vorticity distribution of the direct simulations is not exactly 
uniform, but also because the geometrical aspect ratio of the leading vortex in figure 
5 is h/L % 0.4, well beyond the limit of validity of the long-wave approximation that 
led to (16). 

5. Solitary waves and vortex dipoles 
The process by which the layer in figures 4-5 breaks into isolated vortices, both in 

the solutions of the approximate equation (16) and in the direct simulations, is 
interesting and had not, to our knowledge, been reported previously, although its 
initial stages had been described for fronts in Stern & Pratt (1985). It brings t o  mind 
the breakup of the initial conditions of some nonlinear dispersive systems into 
solitary waves and, indeed, the structures appear to preserve their shape for long 
times once they are separated from the initial layer. 

These structures can be identified immediately as shape-preserving vortices which, 
because of the presence of the wall, form part of counter-rotating, touching dipoles. 
This is confirmed by the vorticity maps in figure 5, where they appear as almost semi- 
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PICUBE 6. Circulation density for solitary waves (vortex dipoles), normalized to unit total 
- I  

circulation and w = 2/n .  Solid line, equation ( 1  6) ; dashed, equation (1) ; dotted, Pierrehumbert 
(1980). 

elliptical vortices travelling along the wall. Steady propagating solutions for 
touching dipoles with uniform vorticity were computed in Sadovskii (1971) and 
Pierrehumbert ( 1980). They form a geometrically similar family, parameterized by 
the vorticity w and the area 8, and they move with a translation velocity c = 
0.164 w& (Saffman & Tanveer 1982). Saffman & Szeto (1980) quote experimental 
evidence showing that these dipoles, when produced as perfectly symmetrical 
structures by the presence of a wall, are very stable, in agreement with the results 
of our calculations. 

The solitary waves of (16), if they are really permanent, should also form a 
geometrically similar family. There is only one lengthscale in the flow, and the 
Saffman-Tanveer formula for the propagation velocity should be satisfied, 
c = k 2 ( r / m ) ; ,  where r is the total circulation contained in the structure. It follows 
from the numerical experiments that k, w 0.158, which is in fair agreement with the 
exact value given above. 

The solitary structures produced by the exact two-dimensional equations and by 
(16) are compared in figure 6, together with the circulation distribution for the 
Pierrehumbert dipole. The agreement is only qualitative. An examination of the 
detailed vorticity distributions shows that the direct numerical simulations differ 
from the uniform dipole mainly because of the smoothing of the vorticity near the 
edges, while it has already been noted that the solitary waves are outside the range 
of quantitative agreement of the long-wave approximation of (16). 

It should be noted, finally, that the numerical experiments reported here do not 
constitute a proof for the existence of solitary permanent solutions to (16). A rigorous 
proof requires the computation of permanent waves as such, not as limits of the 
initial-value problem. The evolution experiments, however, serve as useful 
indications of which types of permanent solutions are likely to exist, and these can 
in turn be used as a guide in the search for solutions of the two-dimensional 
equations. T t  is therefore interesting to inquire whether other permanent solutions 
exist besides the solitary waves and the corresponding vortex dipole. Two obvious 
candidates are periodic nonlinear wave trains and solitary waves whose circulation 
does not decay to zero as IzI goes to infinity. The former would correspond to trains 
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of linked dipoles, while the latter would represent a compact vortex riding on a 
uniform layer, or pedestal. Preliminary numerical experiments, such as those 
contained in figure 3, suggest that  the former exist, and indeed Broadbent & Moore 
(1985) describe a family of permanent periodic waves to the contour dynamic 
equations. Numerical evolution experiments, with initial conditions which could be 
expected to generate solitary pedestal solutions of (16), appear to generate almost 
self-similar solitary waves which spread slowly until they merge into the background 
circulation. On the other hand, Stern & Pratt show that a weakly linear version of 
(16), using kernel (ll),  can be related to the Benjamin-Ono equation (Benjamin 
1967) which is known to have soliton solutions. Following these leads, recent 
calculations of permanent solutions to the contour dynamics equations have 
identified a family of solitary waves with non-zero pedestal, which tend almost 
everywhere to the Pierrehumbert dipole in the zero pedestal limit (Higuera & 
Jimknez, 1992). 

6.  Conclusions 
We have shown that a vortex layer of finite longitudinal extent in the 

neighbourhood of a slip wall tends to roll into discrete vortices which move along the 
wall without change in shape or in translation velocity. It had been reported 
previously by Pullin (1981) that infinite periodic connected sheets do not roll up, and 
our computations confirm that conclusion. We have also shown that the qualitative 
behaviour of the layer can be described by means of a nonlinear dispersive ordinary 
integro-differential equation that is satisfied by the layer in the long-wave limit. The 
accumulation of vorticity that leads to rollup can be linked to the appearance of 
discontinuous solutions of the lowest-order approximation, which satisfies the 
equation for nonlinear kinematic waves. The subsequent behaviour is explained by 
the properties of the dominant dispersive term of the next-order approximation and, 
in particular, by the existence of extra conservation laws for the new approximate 
equation that prohibit the existence of steady fronts. 

The disintegration of the layer into individual vortices corresponds to the breaking 
of the solutions of the approximate equation into solitary waves. The vortices 
themselves, being close to a slip wall, behave like the counter-rotating dipoles 
computed by Sadovskii (197 1) and Pierrehumbert (1980). 

The motivation of our investigation was the observation by Sendstad (1992) that 
vortex layers in the wall region of turbulence flows appear to roll into streamwise 
vortices, whioh have been shown repeatedly to be the dominant structures in this 
flow region and, in particular, to be responsible for much of the extra drag of 
turbulent flows (Orlandi & Jimknez 1991). The results in this paper show that the 
rollup is a plausible mechanism, and that it can be explained in purely two- 
dimensional terms in the cross-stream plane, although three-dimensional effects 
would eventually have to come into play to prevent the vortices from decaying 
through viscous diffusion. The rollup mechanism is inviscid and linked to the 
presence of the wall through the effect of the reflected vorticity. It evolves on a 
timescale comparable to the inertial time of the vortex layer. This suggests that any 
effort to control wall turbulence by preventing the formation of the longitudinal 
vortices should concentrate either on preventing the formation of the vortex layers 
near the wall, or on dissipating them once they form. We suggest that this may be 
one of the mechanisms by which riblets decrease the friction coefficient of turbulent 
boundary layers. The fact that, when undisturbed, the layers seem to lie at  the edge 
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of the viscous region, y+ = 10-15, may help to explain why riblets of about that 
height are particularly effective. 
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Appendix A. Linear dispersion relations 

much smaller than the first, we obtain 
Linearizing (16) around y(z) = r+y’(z) ,  where the second term is assumed to be 

where y’ has to be substituted by exp[iK(z-cCt)]. The dispersion relation between c 
and K can be written as 

where h = l t~r is the thickness of the unperturbed layer, and Q(6) = hg(h[) is a 
normalized form of the kernel. For the kernel defined in (1 I ) ,  

& ( E )  = Q O ( 8  = 1/5> co = r(1 - K h ) ,  (A 3) 

whereas the exact dispersion relation for a layer of uniform vorticity nearby is given 
by (12) 

c, = r(i - e-2x7/2Kh. (A 4) 

In  the long-wave limit, K h  $ 1, the two dispersion relations behave similarly, 
differing only at O ( K ~ ) .  In  the high-wavenumber limit, the exact relation decays to 
zero like 

c, w r / 2 ~ h ,  (A 5 )  

while (A 3) decreases linearly to - 00. 

dispersion relation, 
I n  fact, the sine transform in (A 2) can be inverted to obtain a kernel with a given 

The kernel corresponding to (A 4) is, for K 2 0, 

where the branch of the arctangent should be chosen so that it vanishes a t  the origin. 
Far from the origin, Ke -+ l / f ,  while in the limit of [ = 0 it has a simple discontinuity, 
&(0+) = +7c/2h. 
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Appendix B. Conservation laws 
Equation (15) is already in conservation form. Consider a solution such that 

y(z)+y* asz++oO, andintegrate (15) overzE(-co,m). Note that thelast term in 
the equation vanishes at infinity because the derivative in the integrand vanishes. 
The first conservation law, which corresponds to vorticity conservation, is 

To obtain the second conservation law, multiply (15) by 2y, and integrate 
over x ~ ( 0 ,  a). The first two terms in the equation are easily converted into 
conservation form, while the integral term becomes 

which can be integrated by parts - in x - to obtain 

This integral has the form 

[/ym P(z)  F(  s) k ( s  - z )  ds dx, 

and vanishes because of antisymmetry in ( z ,  8). The resulting conservation equation 
can be written as 

Note that this derivation is only valid for those cases in which K is independent of 
y ,  or in which the dependence is such that l?(s-z) remains antisymmetric in ( s , x ) .  
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